
Kou-San Ju, PhD
Dr. Ju is broadly interested in metabolic diversity of microbes and their application to solving modern day challenges in human health and the environment. Working at the interface of chemistry and biology, the Ju laboratory utilizes an interdisciplinary approach to conduct genomics-guided discovery of microbial natural products, decipher the molecular basis of their activity, and to reveal the genetic and biochemical principles governing their biosynthesis. In addition to obtaining insights into the evolution and function of natural product pathways, the results from these studies enable the development of new antibiotics and engineered biocatalysts with biotechnological applications.

Razi Kebriaei, PhD
Dr. Kebriaei’s research is focused on the treatment of multi-drug resistant bacterial infections. Some examples of the diseases associated with these infections include bacteremia, endocarditis, bone and joint infections and implant associated infections. Her current work is concentrated on both planktonic and biofilm states of bacteria and novel approaches for combating multi-drug resistant infections. She utilizes various classes of antimicrobials with distinct mechanisms of action to discover optimal treatment options for a wide range of infectious diseases. In addition, she designs and operates pharmacokinetic/pharmacodynamic models to simulate humanized doses in vitro. The majority of knowledge achieved from this research is translatable to bedside and leads to better patient outcomes.

Ross Larue, PhD
The Larue lab focuses on infectious diseases with the goal of bridging the discovery of novel drugs to translating these emerging therapies for the treatment of patients in the clinic. It is through efforts involving an understanding of the biology behind current and emerging viral pandemics that it will be possible to successfully prevent, treat, and potentially cure these rapidly emerging worldwide outbreaks. Our laboratory is directed towards human immunodeficiency virus (HIV), which is the causative agent of acquired immunodeficiency syndrome (AIDS), with ~36.7 million people worldwide infected. In particular, the Larue lab focuses on investigating the biology of HIV-1 and how its viral components interact with human host proteins. Currently, the laboratory is working on novel inhibitors that target integrase, a key HIV viral protein responsible for the permanent incorporation of its viral genetic material into infected individuals. Also, they are focused on structural studies to address how this and other viral proteins interact with host proteins. His lab’s overall goal is to overcome significant issues with novel therapies, such as viral drug resistance and the deleterious side effects seen when treating HIV/AIDS in the clinic.

Tom Li, PhD
Dr. Li‘s lab focuses on the design, synthesis and biochemical testing of small molecules for cancer and infectious diseases. For the cancer area, his lab focuses on prostate cancer, the second most common cancer in the U.S. Androgen deprivation therapy (ADT) has been the mainstay of prostate cancer therapy. However, most patients will progress to castrate resistance prostate cancer (CRPC) after several years of treatment. The survival rate of CRPC is only 30%. Dr Li’s research effort focuses on the design of several classes of agents to treat CRPC. In the area of infectious disease, his lab focuses on the design of agents for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection, which causes 20,000 U.S. deaths per year. The agents his lab is designing target metabolic pathways unique to bacteria. In both the prostate cancer and MRSA areas, they have generated several series of compounds and are currently undertaking active testing.

Mark Mitton-Fry, PhD
Dr. Mitton-Fry’s research team is dedicated to inventing cures for multidrug-resistant bacterial infections. The lab focuses primarily on the discovery of Novel Bacterial Topoisomerase Inhibitors (NBTIs), compounds which can overcome resistance by means of their differentiated binding mode. The lab uses the tools of synthetic medicinal chemistry to design and prepare innovative new molecules, and collaborates broadly to evaluate their biological, pharmaceutical, and toxicological properties.

Karl Werbovetz, PhD
The primary focus of research in Dr. Werbovetz’s group is the discovery and development of new drug candidates and drug delivery strategies against leishmaniasis, a protozoan parasitic disease that mainly affects developing areas of the world. The Werbovetz lab is involved in the synthesis of new drug candidates as well as the in vitro and in vivo antileishmanial evaluation of molecules made in house and by collaborators. The lab is also interested in pursuing other interesting biological activities displayed by molecules from the lab.

Jack Yalowich, PhD
Dr. Yalowich’s lab focuses on the mechanisms of action and resistance to a class of anticancer agents known as DNA topoisomerase II (topo IIα) inhibitors, such as the anticancer agent etoposide; a natural product analog. Ongoing projects characterize alternative RNA processing of topo IIα pre-mRNA that results in decreased expression of topo IIα in acquired resistance to etoposide. Strategies to circumvent drug resistance involve CRISPR/Cas9 gene editing to restore proper RNA splicing function in resistant cells. In addition, the role of micro-RNAs as determinants of anticancer drug resistance is under investigation. A variety of natural products are also under study as new and effective anticancer agents. Finally, members of the Yalowich lab actively collaborate with Dr. Mark-Mitton-Fry to evaluate the mechanisms of action and efficacy of newly synthesized Novel Bacterial Topoisomerase Inhibitors (NBTIs).