
Sharyn Baker, PharmD, PhD
The research in Dr. Baker’s lab is focused on identifying mechanisms of drug resistance in Acute Myeloid Leukemia and the preclinical evaluation of new therapeutic strategies to treat or circumvent resistance. These studies utilize molecular biology, pharmacology and next generation sequencing techniques and in vitro/in vivo models of cancer. Her research also involves characterizing the clinical pharmacology of investigational and approved anticancer agents in laboratory models and cancer patients to improve drug therapy. Dr. Baker’s lab works in a collaborative team environment so that the most promising preclinical findings are translated to clinical trials, and in turn, clinical observations provide feedback to inform preclinical studies.

Shuiying Hu, PhD
Many chemotherapeutic agents can cause neurological side effects, impacting quality of life. The incidence of chemotherapy-induced peripheral neuropathy (CIPN) is particularly high with agents such as paclitaxel and oxaliplatin, occurring in up to 80% of patients receiving such agents. There are currently no effective strategies for prevention of CIPN, and rationally designed intervention studies are needed to better address this gap. Dr. Hu’s research interests are focused on the development of transport modulators that could be used in conjunction with neurotoxic chemotherapy to understand drug transporter regulation mechanism; to determine the role of drug transporters on anticancer agents induced inter-individual pharmacokinetic variability, antitumor efficacy and drug to drug interaction; to evaluate contribution of solute carrier to chemotherapy-induced CIPN; and to develop preclinical and clinical studies with potential implications to ameliorate the incidence and severity of debilitating side effects of cancer drugs.

Deanna Kroetz, PhD, BSPharm
The Kroetz lab seeks to understand the molecular basis of interindividual variation in drug response and toxicity. We investigate genetic differences in chemotherapy-induced peripheral neuropathy and other cancer drug phenotypes and search for new therapeutic approaches targeting ABC transporters.

Mitch A. Phelps, PhD
Dr. Phelps’ research aims to develop novel anticancer and immune-modulatory therapies and improve upon existing therapies through translational research. This includes clinical research studies that aim to evaluate the clinical pharmacology of novel or existing, FDA-approved therapies, or their combinations, in patients with various forms of hematologic and solid tumor malignancies. Dr. Phelps’ group uses quantitative bioanalysis and pharmacometric approaches (PK/PD modeling and simulation) to explore mechanisms of drug resistance, identify individual patient factors contributing to PK and PD variability, and individualize dosing regimens. Pharmacometric and quantitative approaches are also applied in preclinical in vitro and in vivo animal models to study effects observed in the clinic and to support development of novel, targeted agents (small molecules, oligonucleotides, and proteins) and/or novel drug delivery platforms (immunoliposomes, exosomes).

Alex Sparreboom, PhD
The Sparreboom lab is interested in mechanisms by which small-molecule anticancer drugs reach sites of elimination and indirectly affect inter-individual pharmacokinetic variability. Ongoing projects are focused on the role of the transporters OCT2 and MATE1 in the pharmacokinetics of platinum-based chemotherapeutics, and utilize an arrays of experimental models, including transporter-deficient zebrafish, mice, and rats. Within the Experimental Cancer Pharmacology Laboratory, members of the Sparreboom lab actively collaborate with Dr. Sharyn Baker on characterizing the pharmacokinetic properties of novel agents used in the treatment of acute myeloid leukemia, and with Dr. Shuiying Hu on the contribution of organic anion transporting polypeptides to the toxicity of tubulin poisons.